

Basic Fibroblast Growth Factor Decreases Type V/XI Collagen Expression in Cultured Bovine Aortic Smooth Muscle Cells

Kyriakos E. Kypreos and Gail E. Sonenshein*

Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118

Abstract Vascular smooth muscle cells (SMCs), the major cellular constituent of an artery, synthesize the bulk of fibrillar collagens, including type V/XI, which regulates heterotypic collagen fibril assembly. Basic fibroblast growth factor (bFGF) is a heparin-binding polypeptide growth factor that has been implicated in important events during the development of atherosclerosis, such as early intimal SMC proliferation. Here we have investigated the effects of bFGF on aortic SMC expression of type V/XI collagen. Treatment of exponentially growing or serum-deprived subconfluent cultures of bovine aortic SMCs with bFGF decreased the steady-state levels of the mRNAs for collagen type V/XI, including $\alpha 1(V)$, $\alpha 2(V)$, and $\alpha 1(XI)$. The effect of bFGF was time dependent with a two- and a fourfold decrease in $\alpha 2(V)$ mRNA observed after treatment for 24 and 48 h, respectively. This decrease resulted from a drop in the rate of $\alpha 2(V)$ gene transcription; no change was observed in the stability of the $\alpha 2(V)$ mRNA. Furthermore, accumulation of collagen protein decreased upon bFGF treatment. As expected, treatment with bFGF increased the rate of proliferation of serum-deprived SMCs, as judged by DNA content in the cultures, thymidine incorporation, and steady-state mRNA levels of the S-phase-expressed histone H3.2. These results suggest that bFGF plays an important role in the regulation of collagen fibril structure, with potential implications for the development and organization of an atherosclerotic lesion. *J. Cell. Biochem.* 68:247–258, 1998. © 1998 Wiley-Liss, Inc.

Key words: SMCs; bFGF; collagen fibril structure; mRNA; atherosclerotic lesion

Smooth muscle cells (SMCs) are the major constituents of the medial layer of an artery. During the development of the artery, SMCs go through an initial highly proliferative phase, followed by the synthesis of extracellular matrix components, including collagens, elastin, and proteoglycans, as well as the enzymes involved in matrix protein deposition [reviewed in Ross, 1993]. Once the artery has been fully formed, SMCs differentiate into a contractile phenotype in which they normally remain [Chamley-Campbell et al., 1979]. SMCs also play a crucial role in the development of athero-

sclerosis. During lesion formation, SMCs migrate from the medial layer into the intima, as a normal response to injury [Ross, 1993]. In this new environment, some initial rounds of cell proliferation occur, which are followed by the synthesis and deposition of the components of the fibrotic plaque, including the major fibrillar collagen types I and III and the minor fibrillar collagen V/XI [Poole et al., 1971; Ross, 1993; Schwartz et al., 1985; Vuorio and deCrombrughe, 1990; Gordon et al., 1990; Strauss et al., 1994].

Type V collagen belongs to the group I fibrillar collagens and was originally discovered in skin [Chung et al., 1976] and in human placenta [Sage and Bornstein, 1979]. It is also expressed in a variety of other tissues, including smooth muscle tissue [Liau and Chan, 1989]. Type XI collagen, another group I fibrillar collagen, was known to be closely related structurally to type V collagen and share similar properties [Eyre and Wu, 1987; Morris et al., 1990]; however, these two species were originally denoted as different collagen types based on their

Abbreviations: SMCs, smooth muscle cells; bFGF, basic fibroblast growth factor; DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; DRB, 5,6-dichlorobenzimidazole riboside.

Contract grant sponsor: National Institutes of Health; Contract grant numbers: HL13262 and HL57326.

*Correspondence to: Gail E. Sonenshein, Department of Biochemistry, Boston University School of Medicine, 80 East Concord St., Boston, MA 02118.

E-mail: gsonensh@acs.bu.edu

Received 23 July 1997; Accepted 17 September 1997

apparent separate sites of synthesis. In particular, type XI collagen was thought to be expressed exclusively in cartilage; however, more recently type XI chains were detected in bone in trimeric structures with type V [Niyibizi and Eyre, 1989]. In addition, mRNA for various type XI chains were found in the placenta [Bernard et al., 1988], and in rhabdomyosarcoma cells [Kleman et al., 1992]. We demonstrated that bovine vascular SMCs synthesize the $\alpha 1$ chain, but not the $\alpha 2$ or $\alpha 3$ chain of type XI collagen [Brown et al., 1991]. As a result of these findings, types V and XI are now considered a single family. Immunolocalization and chemical cross-linking studies have shown that type V/XI collagen can participate along with other fibrillar collagens in heterotypic fibrils [Fitch et al., 1984, 1988; Birk et al., 1988; Mendler et al., 1989]. Evidence obtained originally in vitro [Birk et al., 1990] and more recently in vivo [Andrikopoulos et al., 1995; Marchant et al., 1997] indicates that type V collagen plays a very important role in the regulation of the diameter and architecture of heterotypic fibrils. In atherosclerotic lesions in humans and in animal models, the ratio of type V collagen to types I and III collagen was found to be increased [Ooshima, 1981; Morton and Barnes, 1982; Murata et al., 1986] suggesting that this collagen family may play a significant role in the pathology of atherosclerosis.

The cytokine basic fibroblast growth factor (bFGF) was originally identified as an activity in pituitary extracts that stimulated growth of Swiss hamster 3T3 fibroblasts [Gospodarowicz et al., 1984]. bFGF is known for a multiplicity of biological activities both in vivo and in vitro [Klagsbrun and Edelman, 1989; Burgess and Maciag, 1989; Rifkin and Moscatelli, 1989]. For example, it has been shown to act as a potent mitogen for a variety of cells in culture, including SMCs [Winkles et al., 1987]. bFGF is a single polypeptide with microheterogeneity at the N-terminal region that yields proteins of molecular weights ranging from 16 to 24 kDa [reviewed in Newby and George, 1993]. bFGF lacks the classical signal peptide that targets various proteins to the secretory pathway and the mechanisms of its release remain obscure. Previous studies have shown that viable cells deposit bFGF into the extracellular matrix [Gospodarowicz et al., 1983; Vlodavsky et al., 1987b], while more recent studies have shown that bFGF is secreted upon cell injury or lysis

[Abraham et al., 1986; McNeil et al., 1989; Brooks et al., 1991; Muthukrishnan et al., 1991; Villaschi and Nicosia, 1993]. Following injury to the intima, SMCs are exposed to a variety of cytokines and factors, such as bFGF, secreted by the endothelial cells, smooth muscle cells, and macrophages [Baird et al., 1985; Vlodavsky et al., 1987a,b; Schweigerer et al., 1987; Sarzani et al., 1989; Mansson et al., 1990; Speir et al., 1991; Lindner et al., 1991]. Expression of bFGF correlates with the migration and rapid proliferation of vascular SMCs during the very early stages of restenosis after balloon injury [Lindner and Reidy, 1991]. In culture, treatment of vascular SMCs with bFGF decreased expression of collagen type I and type III [Majors and Ehrhart, 1993; Kennedy et al., 1995]. Here, we examined the effect of bFGF treatment on the expression of type V/XI collagen. Treatment of bovine aortic SMCs with bFGF caused a significant drop in the levels of type V/XI collagen mRNA and protein, due in part to a decreased rate of gene transcription.

MATERIALS AND METHODS

Cell Culture and Treatment Conditions

Tissue culture reagents were purchased from Life Technologies, Inc., except for Dulbecco's modified Eagle's medium (DMEM), which was purchased from JRH Biosciences. SMC explants were derived from the aortic arches of female calves, as we have described previously [Beldekas et al., 1982]. Cultures were fed every 2–3 days. Second and third passage cells were used for experiments.

For treatment with bFGF (unless otherwise indicated), cells were plated at an initial density of 5.0×10^5 cells/P150 dish (0.33×10^4 cells/cm 2) and grown in medium supplemented with 10% fetal bovine serum (FBS) (10% FBS-DMEM). Subconfluent cultures were serum starved for 1–3 days in medium containing 0.5% FBS (0.5% FBS-DMEM). Following addition of bFGF (0.5–5 ng/ml dissolved in carrier solution: 50 mM Tris-HCl, pH 7.5, 0.3 M NaCl, 1 mM dithiothreitol, 0.05% gelatin), or the equivalent volume of carrier solution, cultures were incubated for the times indicated.

DNA Synthesis

SMCs were seeded at 60,000 cells/P35 tissue culture dish in triplicate and grown for 1 day. Cultures were then switched to 0.5% FBS-

DMEM for 24 h, and treated with bFGF or carrier solution for an additional 24 h. During the final hour of treatment, the cells were pulsed with 2 μ Ci/ml of [³H]thymidine (Dupont NEN; 80 Ci/mmol). Cells were washed twice in ice-cold phosphate-buffered saline (PBS) and lysed with addition of 1 ml of 10% trichloroacetic acid. After 30 min, the resulting precipitate was washed once with 10% trichloroacetic acid, solubilized by incubation with 0.5 ml of 0.4 N NaOH for 1 h, diluted to 5 ml with Formula-963 aqueous counting mixture (DuPont NEN) and quantitated in a LB 1217 Rack Beta liquid scintillation counter. The results are reported as the mean \pm SD.

RNA Isolation and Hybridization Analysis

Total cellular RNA was isolated by guanidinium isothiocyanate extraction followed by purification on CsCl density gradients, as described [Sambrook et al., 1989]. For Northern blot analysis, RNA samples (10 or 15 μ g) were denatured and separated by electrophoresis on 1.0% formaldehyde-agarose gels [Dean et al., 1983]. RNA was stained with ethidium bromide to verify integrity and equal loading and then transferred to GeneScreen Plus (DuPont NEN). RNA was cross-linked to the membrane by ultraviolet (UV) irradiation (Stratalinker, Stratagene) at 0.12 joules/cm² for 30 s. Probes, prepared by random priming, were used as described previously [Kindy and Sonenshein, 1986], except that 2.0×10^6 cpm/ml [³²P]-labeled DNA was employed. Quantitation by scanning densitometry was performed using a Molecular Dynamics 300A computing densitometer.

Pepsin Digestion of Extracellular Matrix Proteins

Cultures, treated with bFGF or carrier solution alone for 24 h, were labeled with 25 μ Ci/ml [³H]proline, as described previously [Lawrence et al., 1994]. The medium was removed, and the cell layers were washed three times in ice-cold PBS. The cell layer was scraped in pepsin digestion buffer, transferred to a 50-ml Falcon conical tube, and digested at 4°C for 16 h. The pepsin-digested cell-layer-associated matrix was dialyzed exhaustively against 0.5 M HAc, lyophilized, and reconstituted to 1 ml distilled H₂O supplemented with protease inhibitors (2 mM phenylmethylsulfonyl fluoride and 2 mM p-hydroxymercuribenzoate). Samples were normalized for DNA content according to Burton

(1956) and resolved by electrophoresis in a 5–15% polyacrylamide gradient sodium dodecyl sulfate (SDS) gel. The radioactive signal was enhanced using fluorography with 2,5-diphenyloxazole/dimethylsulfoxide (DMSO), as described [Laskey and Mills, 1975]. Molecular mass markers used included species at 200, 97.4, 69, 46, 30, 21.5, and 14.3 kDa (Rainbow Molecular Mass Markers, Amersham, Arlington Heights, IL). The molecular mass of the species was estimated based on their migration relative to the markers.

Cloned DNA Species

The cDNAs used included α 1(III) collagen: pCg6, 1.05-kb bovine cDNA [Stepp et al., 1985]; α 1(V) collagen: pTV302, 3.2-kb human cDNA [Takahara et al., 1991]; α 2(V) collagen: Hf511, 2.5-kb human cDNA [Weil et al., 1987]; α 1(XI) collagen: pMU5G3, 2.7-kb bovine cDNA [Brown et al., 1991]. The histone H3.2: pRAH3.2, a genomic fragment encoding amino acids 57–125 of histone H3.2 [Alterman et al., 1984] was also employed.

Runoff Transcription Assays

Nuclear runoff analysis was performed by a modification of the method of Greenberg and Ziff (1984). Briefly, approximately 1×10^7 nuclei were incubated in the presence of 250 μ Ci of [³²P]-UTP (Dupont NEN; 3,200 Ci/mmol) for 30 min at 30°C. Labeled RNA was isolated, and equal amounts of radiolabeled RNA (4.5×10^6 cpm/ml of hybridization buffer) were hybridized to plasmid DNA (10 μ g/sample) immobilized onto GeneScreen Plus by slot blotting followed by UV irradiation; after hybridization blots were washed as described previously [Marhamati and Sonenshein, 1996].

RESULTS

Treatment With bFGF Decreases the Steady-State Levels of Type V/XI Collagen mRNA in Cultures of Aortic SMCs

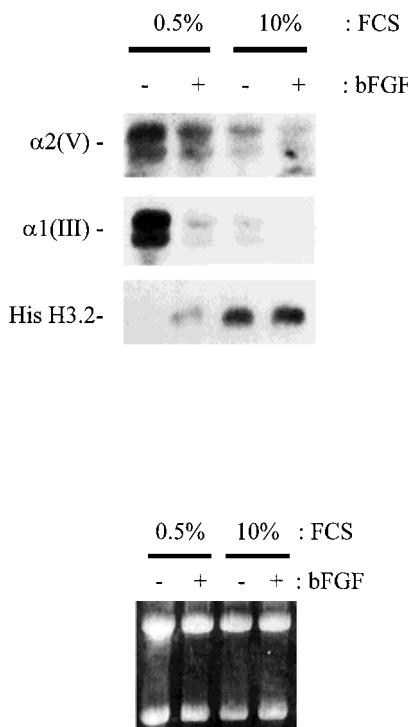
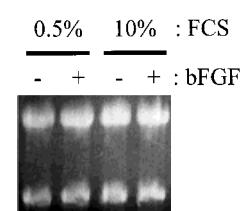
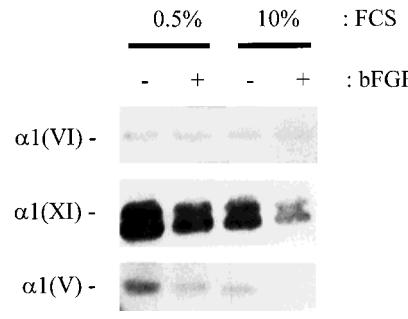
We first addressed the question of whether treatment of SMCs with bFGF affects type V/XI collagen mRNA expression. Subconfluent cultures of bovine aortic SMCs were incubated in DMEM medium containing 10% FBS (10% FBS–DMEM) or under serum deprivation conditions (0.5% FBS–DMEM) for 24 h and then treated with 2 ng/ml bFGF, or the equivalent volume of carrier solution as control, for an additional 24 h. Total RNA was extracted from

the cultures and samples were subjected to Northern blot analysis for collagen chain expression. Treatment with bFGF caused a decrease in the steady-state mRNA levels of the $\alpha 1(V)$, $\alpha 2(V)$, and $\alpha 1(XI)$ collagen chains at either serum concentration (Fig. 1A, 1B). A drop was also detected in the $\alpha 1(III)$ mRNA levels (Fig. 1A), consistent with previously published results [Kennedy et al., 1995]. As expected, based on previous work in our laboratory [Brown et al., 1991], serum deprivation of subconfluent cultures resulted in increased mRNA levels for all fibrillar collagens. Collagen type VI is a nonfibrillar collagen, which is expressed in a variety of cells [Timpl and Engel, 1987]. In contrast to the effects of serum deprivation on the expression of fibrillar collagen mRNAs, the levels of collagen $\alpha 1(VI)$ mRNA were not affected (Fig. 1B and data not shown). Furthermore, treatment with bFGF had no effect on the levels of $\alpha 1(VI)$ collagen mRNA. Thus, bFGF selectively mediates a significant reduction in the steady-state mRNA levels for the chains of type V/XI collagen in vascular smooth muscle cells.

Dose- and Time-Dependent Effect of bFGF on the Levels of $\alpha 2(V)$ and $\alpha 1(XI)$ Collagen mRNA

To test whether the effects of bFGF are dose dependent, the levels of procollagen $\alpha 2(V)$ and $\alpha 1(XI)$ mRNA were measured as a function of bFGF concentration. Cultures of aortic SMCs were seeded at 1×10^6 cells per P-150 tissue culture plate in 10% FBS-DMEM and treated with 0.5, 1, 2, and 5 ng/ml bFGF for 24 h and RNA isolated and analyzed by Northern blotting (Fig. 2). A detectable decrease in the levels of $\alpha 2(V)$ and $\alpha 1(XI)$ mRNA was observed with a concentration of bFGF as low as 0.5 ng/ml. Treatment with increasing concentrations of bFGF resulted in further decreases in the mRNA levels of these chains, with the lowest levels observed at 2–5 ng/ml bFGF. Higher concentrations of bFGF did not result in a further decrease (data not shown). Thus, a concentration of 2 ng/ml bFGF was selected for the remaining studies.

To determine the kinetics of the response to bFGF, subconfluent SMC cultures, rendered quiescent by serum deprivation for 72 h, were treated with 2 ng/ml bFGF for 24 or 48 h, or carrier solution for 48 h. RNA was extracted from these cultures and analyzed by Northern blotting for $\alpha 2(V)$ collagen expression (Fig. 3). High levels of $\alpha 2(V)$ mRNA were detected in




quiescent cultures. Addition of bFGF for 24 or 48 h resulted in a two- and fourfold drop, respectively in the levels of this message, in comparison to the levels detected in quiescent, or control cultures treated with carrier solution for 48 h. Thus, the reduction in the steady-state levels of $\alpha 2(V)$ mRNA caused by bFGF occurs in a time-dependent fashion.

bFGF Decreases Collagen Protein Expression in Aortic SMCs

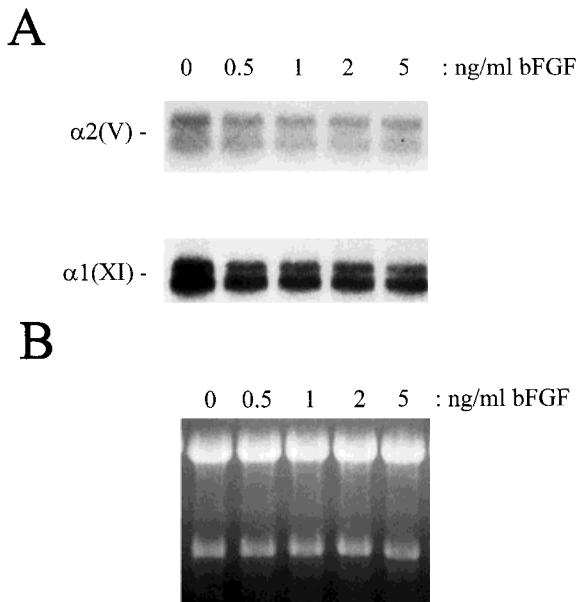
To measure the effects of bFGF on collagen protein expression, a radiolabeling experiment was performed. Subconfluent cultures of aortic SMCs, maintained in 10% FBS-DMEM or 0.5% FBS-DMEM for 24 h, were treated with either 2 ng/ml bFGF or equivalent volume of carrier solution. Cultures were then labeled with [3 H]proline for 8 h, washed, and the cell layers digested with 0.1 mg/ml pepsin at 4°C for 24 h. Samples were normalized for DNA content and analyzed by electrophoresis in 5–15% SDS-PAGE (Fig. 4). Cells treated with carrier solution exhibited major bands that correspond to $\alpha 1(V)/\alpha 1(XI)$, $\alpha 2(V)$, $\alpha 1(I)/\alpha 1(III)$, and $\alpha 2(I)$, as identified previously [Lawrence et al., 1994]. Treatment with bFGF, in either serum concentration, resulted in a reduction in the levels of type V/XI collagen proteins, as well as types I and III. These findings are consistent with the observed drop in mRNA levels of these fibrillar collagens.

bFGF Does Not Decrease the Stability of Procollagen mRNA

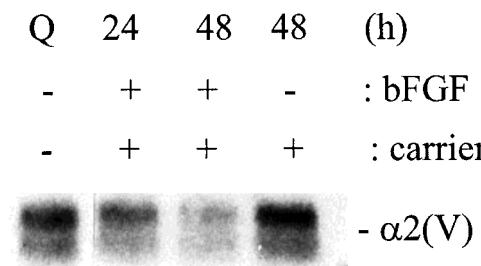
To investigate whether bFGF affects the stability of collagen mRNA, subconfluent cultures of SMCs were treated with 2 ng/ml bFGF or carrier solution for 24 h under serum deprivation conditions. The selective inhibitor of RNA polymerase II 5,6-dichlorobenzimidazole riboside (DRB) was then added to each culture and total RNA isolated at the indicated time points. As shown in Figure 5, treatment with bFGF for 24 h (0 h DRB) led to the expected drop in the $\alpha 2(V)$, $\alpha 1(XI)$, and $\alpha 1(III)$ mRNA levels. No significant change in the rate of collagen mRNA decay was seen in bFGF treated versus control cultures. DRB treatment had the expected effect on the mRNA levels of the labile *c-jun* message in control and bFGF treated cultures, verifying the efficacy of the inhibitor. Thus, bFGF did not decrease the stability of the mRNA species for these collagen chains, suggesting

A**B**

that other mechanisms are involved in the drop in steady-state levels of these mRNAs.


Down-Regulation of Collagen Gene Transcription by bFGF

To determine whether transcriptional control mechanisms play a role in the decrease in the steady-state collagen mRNA levels, nuclear run-off analysis was performed. Nuclei were isolated from subconfluent cultures treated with 2 ng/ml bFGF or equivalent volume of carrier solution for 24 h under serum deprivation conditions. Hybridization of run-off transcripts to $\alpha 2(V)$, $\alpha 1(XI)$, and $\alpha 1(III)$ probes decreased significantly upon bFGF treatment (Fig. 6). In contrast, bFGF treatment slightly increased the rate of transcription of the cell-cycle regulated gene *B-myb*, whose steady-state mRNA levels increased in the presence of bFGF (data not shown). Thus, bFGF treatment results in a drop in the rate of transcription of $\alpha 2(V)$, $\alpha 1(XI)$, and $\alpha 1(III)$ procollagen mRNA and this drop accounts, at least in part, for the change in the steady state mRNA levels of these collagens.


bFGF Increases the Rate of Bovine Aortic SMC Proliferation

bFGF was found to stimulate growth in a variety of cells, including SMCs [Winkles et al., 1987; Goldring and Goldring, 1991; Newby and George, 1993; Nugent et al., 1993]. To determine the extent of induction of cell growth upon bFGF treatment with the bovine aortic SMCs, the mRNA levels of the S-phase expressed gene histone H3.2 were measured. The decrease in the collagen mRNA levels was accompanied by an increase in histone H3.2 mRNA levels. Treatment with bFGF caused a very dramatic increase in H3.2 mRNA levels under serum deprivation conditions (0.5% FBS-DMEM) but had only a minor effect in exponentially growing cells, incubated in 10% FBS-DMEM (Fig. 1A).

Fig. 1. Treatment with bFGF decreases matrix gene and increases growth-related mRNA expression in aortic SMCs. Subconfluent SMC cultures were incubated for 24 h in complete medium (10% FBS-DMEM), or under serum deprivation conditions (0.5% FBS-DMEM), and then treated either with 2 ng/ml bFGF (in carrier solution) (+), or the equivalent volume of carrier solution (-) for an additional 24 h. Total RNA was isolated and samples (15 μ g) subjected to Northern blot analysis for the indicated genes analyzed in two separate gels (A,B). Bottom panels, ethidium bromide-stained gel confirming RNA quality and equal loading.

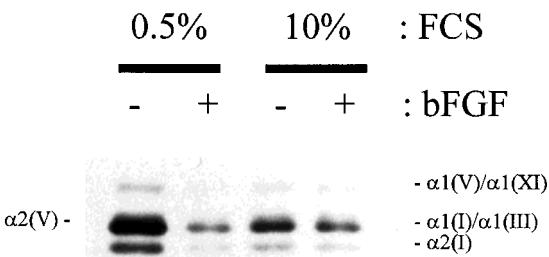


Fig. 2. Dose-dependent effects of bFGF on gene expression. Subconfluent cultures of SMCs were maintained under serum deprivation conditions for 24 h and then treated with carrier solution (0 ng/ml) or the indicated concentration of bFGF for an additional 24-h period. **A:** Total RNA was isolated and samples (15 μ g) subjected to Northern blot analysis for the indicated genes. **B:** Ethidium bromide-stained gel, confirming RNA quality and equal loading, is shown.

Fig. 3. Time-dependent effects of bFGF on α 2(V) collagen mRNA expression. Subconfluent cultures of SMCs were maintained under serum deprivation conditions for 72 h, at which time they were in quiescence (Q). The indicated cultures were then treated either with 2 ng/ml bFGF for an additional 24 or 48 h or with carrier solution for 48 h. Total RNA was isolated and samples (10 μ g) subjected to Northern blot analysis for α 2(V) collagen gene expression.

To test directly for the mitogenic effect of bFGF under serum deprivation conditions, SMCs were plated at very low density and grown for 1 day in 10% FBS-DMEM (subconfluence), switched to 0.5% FBS-DMEM for 24 h, and treated with increasing amounts of bFGF or carrier solution as control, for an additional 24 h. Following pulse labeling with 2 μ Ci/ml [3 H]thymidine for 1 h, cells were harvested. A 3-fold increase in

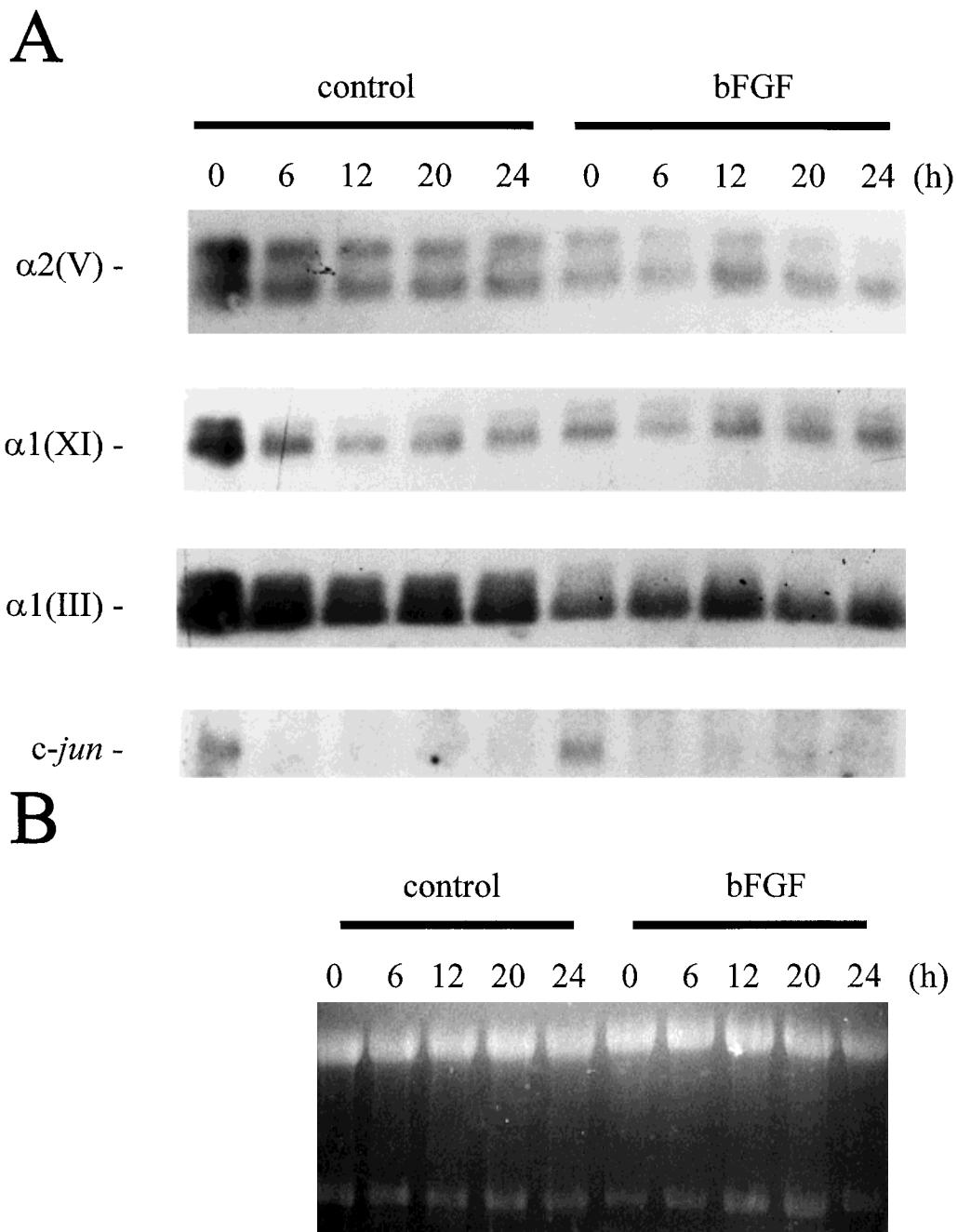
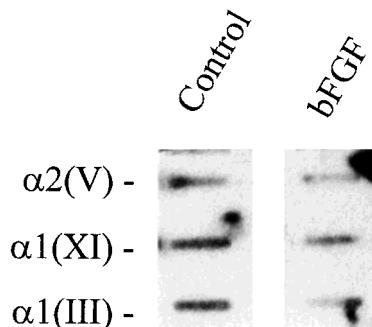


Fig. 4. Treatment with bFGF decreases the levels of cell layer-associated collagen protein. Subconfluent cultures were incubated for 24 h in 10% FBS-DMEM or 0.5% FBS-DMEM, and then treated with 2 ng/ml bFGF (+) or carrier solution (-) for an additional 24 h period. Cultures were then incubated in the presence of 25 μ Ci/ml [3 H]proline for 8 h and the cell layer-associated, pepsin-resistant material extracted. Samples, normalized for DNA content, were subjected to 5–15% SDS-PAGE and proteins visualized by autoradiography. Positions of the types I, III, and V/XI collagen protein chains were made on the basis of comparison to molecular weight and purified collagen protein standards [Lawrence et al., 1994] (data not shown).

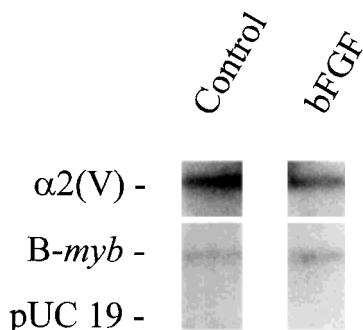
thymidine incorporation was observed at every concentration of bFGF used, in comparison to the control serum deprived cultures (Fig. 7). A distinct change in SMC morphology, was also noted upon bFGF treatment. Control cultures (treated with carrier solution) displayed a flattened, spread phenotype, typical of quiescence. In contrast, cells treated with bFGF were more spindle shaped and thinner; furthermore cells undergoing cytokinesis were plainly visible (Fig. 8). Thus, treatment of bovine aortic SMCs with bFGF results in increased cell proliferation, with a more pronounced effect under serum deprivation conditions.

DISCUSSION

Treatment with bFGF decreased type V/XI collagen expression by bovine aortic SMCs. A drop in type V/XI collagen protein expression was paralleled by a drop in the steady-state levels of the collagen α 1(V), α 2(V), and α 1(XI) mRNAs. Consistent with the work of others [Kennedy et al., 1995], we observed that bFGF decreased the steady-state levels of α 1(III) mRNAs. The decrease in the collagen mRNAs occurred in a dose- and time-dependent fashion. Treatment with bFGF resulted in a decreased rate of transcription of genes for the α 2(V), α 1(XI), and α 1(III) collagen chains, but did not apparently decrease the stability of their mRNAs. In contrast to these effects on fibrillar collagens, no change in the steady-state level of α 1(VI) mRNA was observed. Treat-


Fig. 5. Treatment with bFGF does not decrease the half-life of decay of collagen mRNAs. Subconfluent cultures were maintained under serum deprivation conditions for 24 h and then treated with carrier solution or 2 ng/ml bFGF for an additional 24-h period. Following replacement with fresh 0.5% FBS-

DMEM containing bFGF or carrier solution, DRB was added to 30 µg/ml and total RNA isolated after 0, 6, 12, 20, or 24 h. **A:** RNA samples (15 µg) were subjected to Northern blot analysis for the indicated genes. **B:** Ethidium bromide-stained gel is shown.


ment with bFGF increased the rate of proliferation of SMCs when incubated under serum deprivation conditions, while only a modest effect was seen in complete medium. Since the decrease in type V/XI collagen expression was seen in SMCs incubated with bFGF under ei-

ther growth conditions, its effects on this collagen type appear to occur independent of the growth state of the cells. Thus, our results extend the findings of the effects of bFGF to type V/XI collagen which regulate heterotypic collagen fibril assembly, suggesting bFGF plays

A

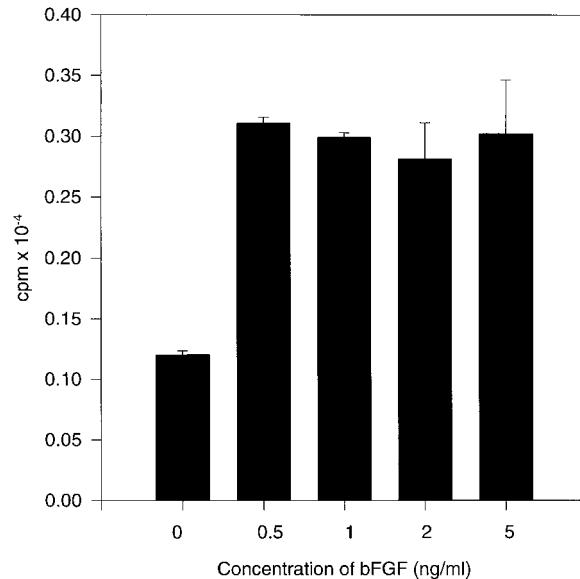

B

Fig. 6. The rate of transcription of collagen genes is decreased and *B-myb* increased by bFGF treatment. Subconfluent cultures were maintained under serum deprivation conditions for 24 h and then treated with carrier solution or 2 ng/ml bFGF for an additional 24-h period. Nuclei from two independent experiments (A,B) were isolated; the resulting radiolabeled RNAs (runoff transcripts) were hybridized to the 10- μ g/slot of the indicated cDNA probe or pUC 19 vector DNA immobilized on nylon membrane.

an extremely important role in the regulation of the architecture of the collagen fibrils.

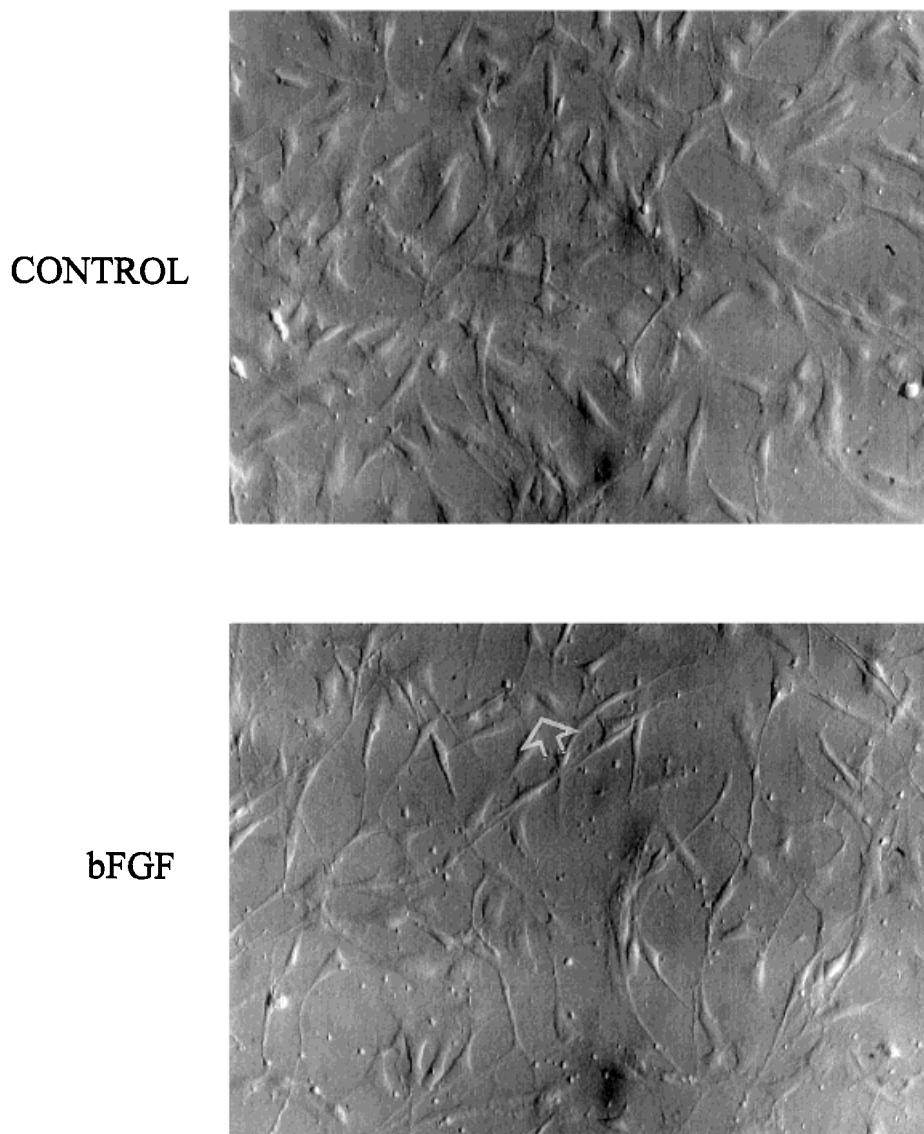

Work from other groups has shown that type V collagen plays a very important role in the structural assembly of heterotypic collagen fibrils in cornea where it assembles along with type I collagen [Fitch et al., 1984, 1988; Birk et al., 1988; Mendl et al., 1989]. Collagen type V is assembled first inside these fibrils, and appears to regulate overall fibril diameter [Birk et al., 1988]. Recently, data from our laboratory indicate that type V/XI collagen plays a similar role in the formation and regulation of fibril architecture by vascular SMCs. In particular, type V/XI collagen participated with type I in heterotypic fibrils, and the ratio of type V/XI to type I collagen correlated with fibril diameter

Fig. 7. Treatment with bFGF increases [³H]thymidine incorporation. Subconfluent cultures were maintained under serum deprivation conditions for 24 h and then treated with carrier solution (0 ng/ml) or the indicated concentration of bFGF for an additional 24-h period. During the last 1 h, cultures were incubated in the presence of 2 μ Ci/ml [³H]thymidine, and the acid-insoluble radioactive material determined.

[K.E. Kypreos, D.E. Birk, V. Trinkaus-Randall, and G.E. Sonenshein, manuscript in preparation].

Although the initiating events in the development of the atherosclerotic plaque remain obscure, the effect of bFGF in promoting proliferation of SMCs in the medial layer of the artery appears to be a key element [Klagsbrun and Edelman, 1989]. Expression of bFGF by endothelial cells and SMCs has been observed in human atherosclerotic lesions [Hughes et al., 1993]. In animal models, antibody to bFGF prevented restenosis after balloon injury [Lindner and Reidy, 1991; Edelman et al., 1992]. In the extracellular matrix, bFGF is associated with heparan sulfate proteoglycans which serves as a storage site for a more localized and regulated response to injury. Heparin bound bFGF appears to be biologically more active and very stable against denaturation and proteolytic degradation by proteinases such as plasmin [Saksela et al., 1988]. Other studies, have shown that elastase is able to release heparin bound bFGF from the extracellular matrix, an observation that may explain, at least partially, the medial hypertrophy and neointimal proliferation caused by ECM-degrading proteinases

Fig. 8. Treatment of serum-deprived SMCs with bFGF, displaying an altered morphology. Subconfluent cultures, maintained under serum deprivation conditions for 24 h, were treated either with carrier solution (control) or with 2 ng/ml bFGF (bFGF) for an additional 24-h period. Cells undergoing cytokinesis were plainly visible (arrow).

in vascular disease [Thompson and Rabinovitch, 1996]. Nugent and Newman [1989] and Koyama et al. [1996] have shown that polymeric type I collagen inhibits proliferation of vascular SMCs in culture, suggesting that the capacity of SMCs to respond to mitogenic stimuli may be highly regulated by changes in the extracellular matrix. Our results suggest that bFGF may prevent collagen deposition early, during the initial stages of plaque formation; decreased collagen deposition may result in a less dense extracellular matrix that allows SMCs to migrate from the medial layer into the

intima where they are able to proliferate. However the effects of bFGF appear to attenuate later, during the most advance stages of the lesion, where collagen secretion and accumulation become major events.

ACKNOWLEDGMENTS

We thank Drs. F. Ramirez and K. Takahara for providing cloned DNA constructs and Dr. M. Nugent for generously supplying bFGF and for his advice and suggestions during the course of these experiments.

REFERENCES

Abraham JA, Mergia A, Whang JL (1986): Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. *Science* 33:545–555.

Alterman R, Ganguly S, Schulze D, Marzluff W, Schildkraut C, Skoultchi A (1984): Cell cycle regulation of mouse H3 histone mRNA metabolism. *Mol Cell Biol* 4:123–132.

Andrikopoulos K, Douglas XL, Keene DR, Jaenisch R, Ramirez F (1995): Targeted mutations in the *col5α2* gene reveals a regulatory role of type V collagen during matrix assembly. *Nature Genet* 9:31–36.

Baird A, Mormede P, Bohlem P (1985): Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage derived growth factor. *Biochem Biophys Res Commun* 126:358–364.

Beldekas JC, Gerstenfeld L, Sonenshein GE, Franzblau C (1982): Processing of procollagen types III and I in cultured bovine smooth muscle cells. *J Biol Chem* 257:12252–12256.

Bernard M, Yoshioka H, Rodriguez E, van der Rest M, Kimura T, Ninomiya Y, Olsen BR, Ramirez F (1988): Cloning and sequencing of pro-alpha 1 (XI) collagen cDNA demonstrates that type XI belongs to the fibrillar class of collagens and reveals that expression of the gene is not restricted to cartilagenous tissues. *J Biol Chem* 263:17159–17166.

Birk DE, Fitch JM, Bariar JP, Doane KJ, Linsenmayer TF (1988): Collagen type I and type V are present in the same fibril in the avian corneal stroma. *J Cell Biol* 106:999–1008.

Birk DE, Fitch JM, Bariar JP, Doane KJ, Linsenmayer TF (1990): Collagen fibrillogenesis in vitro: Interactions of types I and V collagen regulates fibril diameter. *J Cell Sci* 95:649–657.

Brooks RA, Burrin JM, Kohner EM (1991): Characterization of release of basic fibroblast growth factor from bovine retinal endothelial cells in monolayer cultures. *Biochem J* 276:113–120.

Brown KE, Lawrence R, Sonenshein GE (1991): Concerted regulation of alpha 1(XI) and alpha 2(V) collagen mRNAs in bovine vascular smooth muscle cells. *J Biol Chem* 266:23268–23273.

Burgess WH, Maciag T (1989): The heparin-binding (fibroblasts) growth factor family of proteins. *Annu Rev Biochem* 58:575–606.

Chamley-Campbell J, Campbell GR, Ross R (1979): The smooth muscle cell in culture. *Physiol Rev* 59:1–61.

Chang CJ, Sonenshein GE (1991): Increased collagen gene expression in vascular smooth muscle cells cultured in serum or isoleucine deprived medium. *Matrix* 11:242–251.

Chung E, Rhodes RK, Miller EJ (1976): Isolation of three collagenous components of probable basement membrane origin from several tissues. *Biochem Biophys Res Commun* 71:1167–1174.

Dean M, Kent RB, Sonenshein GE (1983): Transcriptional activation of immunoglobulin alpha heavy-chain genes by translocation of the *c-myc* oncogene. *Nature* 305:443–446.

Edelman ER, Nugent MA, Smith LY, Karnovsky MJ (1992): Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vascular vasorum in injured rat arteries. *J Clin Invest* 89:181–190.

Eyre DR, Wu J-J (1987): Type XI or 1 α 2 α 3 α collagen. In Mayne R, Burgeson RE (eds): "Structure and Function of Collagen Types." San Diego: Academic Press, pp 261–281.

Fitch JM, Gross J, Mayne R, Johnson Wint B, Linsenmayer TF (1984): Organization of collagen types I and V in the embryonic chicken cornea: Monoclonal antibody studies. *Proc Natl Acad Sci USA* 81:2791–2795.

Fitch JM, Birk DE, Mentzer A, Hasty KA, Mainardi C, Linsenmayer TF (1988): Collagen type I and V are present in the same fibril in the avian corneal stroma. *Invest Ophthalmol Vis Sci* 29:1125–1136.

Goldring MB, Goldring SR (1991): Cytokines and cell-growth control. *Crit Rev Eukaryot Gene Expr* 1:301–326.

Gordon D, Reidy M, Benditt E, Schwartz S (1990): Cell proliferation in human coronary arteries. *Proc Natl Acad Sci USA* 87:4600–4604.

Gospodarowicz D, Cheng J, Lui G, Baird A, Bohlen P (1984): Isolation of brain fibroblast growth factor by heparin Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. *Proc Natl Acad Sci USA* 81:6963–6967.

Gospodarowicz D, Ferrara N, Haaparanta T, Neufeld G (1988): Basic fibroblast growth factor: expression in cultured bovine vascular smooth muscle cells. *Eur J Cell Biol* 46:144–151.

Gospodarowicz D, Gonzalez R, Fujii DK (1983): Are factors originating from serum, plasma, or cultured cells involved in the growth-promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells? *J Cell Physiol* 114:191–202.

Greenberg ME, Ziff EB (1984): Stimulation of 3T3 cells induces transcription of the *c-fos* proto-oncogene. *Nature* 311:433–438.

Hughes SH, Crossman D, Hall PA (1993): Expression of basic and acidic fibroblast growth factors and their receptor in normal and atherosclerotic human arteries. *Cardiovasc Res* 27:1214–1219.

Hurley MM, Abreu C, Harrison JR, Lichter AC, Raisz LG, Kream BE (1993): Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. *J Biol Chem* 268:5588–5593.

Hurley MM, Kessler M, Gronowicz G, Raisz LG (1992): The interaction of heparin and basic fibroblast growth factor on collagen synthesis in 21-day fetal rat calvariae. *Endocrinology* 130:2675–2882.

Kennedy SH, Qin H, Lin L, Tan EML (1995): Basic fibroblast growth factor regulates type I collagen and collagenase gene expression in human smooth muscle cells. *Am J Pathol* 146:764–771.

Kindy MS, Sonenshein GE (1986): Regulation of oncogene expression in cultured aortic smooth muscle cells. Post-transcriptional control of *c-myc* mRNA. *J Biol Chem* 261:12865–12868.

Klagsbrun M, Edelman ER (1989): Biological and biochemical properties of fibroblast growth factors. *Atherosclerosis* 9:269–278.

Kleman JP, Hartmann DJ, Ramirez F, van der Rest M (1992): The human rhabdomyosarcoma cell line A204 lays down a highly insoluble matrix composed mainly of alpha 1 type XI and alpha type V collagen. *Eur J Biochem* 210:329–335.

Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R (1996): Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. *Cell* 87:1069–1078.

Laskey RA, Mills AD (1975): Quantitative film detection of ^3H and ^{14}C in polyacrylamide gels by fluorography. *Eur J Biochem* 56:335–341.

Lawrence R, Hartmann DJ, Sonenshein GE (1994): Transforming growth factor beta 1 stimulates type V collagen expression in bovine vascular smooth muscle cells. *J Biol Chem* 269:9603–9609.

Lee H, Arsura M, Wu M, Duyao M, Buckler AJ, Sonenshein GE (1995): Role of rel-related factors in control of *c-myc* gene transcription in receptor mediated apoptosis of the murine B cell WEHI 231 line. *J Exp Med* 182:1169–1177.

Liau G, Chan LM (1989): Regulation of extracellular matrix RNA levels in cultured smooth muscle cells. Relationship to cellular quiescence. *J Biol Chem* 264:10315–10320.

Lindner V, Reidy MA (1991): Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. *Proc Natl Acad Sci USA* 88:3739–3743.

Lindner V, Lappi DA, Baird A, Majack RA, Reidy MA (1991): Role of basic fibroblast growth factor in vascular lesion formation. *Circ Res* 68:106–113.

Majors A, Ehrhart LA (1993): Basic fibroblasts growth factor in the extracellular matrix suppresses collagen synthesis and type III procollagen mRNA levels in arterial smooth muscle cultures. *Arteriosclerosis Thromb* 13: 680–686.

Mansson EP, Malark M, Sawada H, Kan M, McKeehan WL (1990): Heparin binding (fibroblast) growth factors type one and two genes are co-expressed in proliferating human vascular endothelial and smooth muscle cells in culture. *In Vitro* 26:209–212.

Marchant JK, Hahn RA, Linsenmayer TF, Birk DE (1996): Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal specific fibril morphology. *J Cell Biol* 135:1415–1426.

Marhamati D, Sonenshein GE (1996): B-myb expression in vascular smooth muscle cells occurs in a cell cycle-dependent fashion and down-regulates promoter activity of type I collagen genes. *J Biol Chem* 271:3359–3365.

McNeil PL, Muthukrishnam L, Warder E, D'Amore PA (1989): Growth factors are released by mechanically wounded endothelial cells. *J Cell Biol* 109:811–822.

Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989): Cartilage contains mixed fibrils of collagen types II, IX, and XI. *J Cell Biol* 108:191–197.

Morris NP, Watt SL, Davis JM, Bachinger HP (1990): Unfolding intermediates in the triple helix to coil transition of bovine type XI collagen and human type V collagens alpha1(2) alpha 2 and alpha 1 alpha 2 alpha 3. *J Biol Chem* 265:10081–10087.

Morton LF, Barnes MJ (1982): Collagen polymorphism in the normal and diseased blood vessel. *Atherosclerosis* 42:41–51.

Murata K, Motayama T, Kotake C (1986): Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. *Atherosclerosis* 60:251–262.

Muthukrishnan L, Warder E, McNeil PL (1991): Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells. *J Cell Physiol* 148:1–16.

Newby AC, George SJ (1993): Proposed roles for growth factors in mediating smooth muscle proliferation in vascular pathologies. *Cardiovasc Res* 27:1173–1183.

Niyibizi C, Eyre DR (1989): Identification of the cartilage alpha 1(XI) chain in type V collagen from bovine bone. *FEBS Lett* 242:314–318.

Nugent MA, Newman MJ (1989): Inhibition of normal kidney cell growth by transforming growth factor-beta is mediated by collagen. *J Biol Chem* 264:18060–18067.

Nugent MA, Karnovsky JM, Edelman ER (1993): Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells. *Circ Res* 73:1051–1060.

Ooshima A (1981): Collagen alpha B chain: increased proportion in human atherosclerosis. *Science* 213:666–668.

Poole JCF, Cromwell SB, Benditt EP (1971): Behavior of smooth muscle cells and the formation of extracellular structures in the reaction of arterial walls to injury. *Am J Pathol* 62:391–413.

Rifkin DB, Moscatelli D (1989): Recent development in the cell biology of basic fibroblast growth factor. *J Cell Biol* 109:1–6.

Ross R (1993): The pathogenesis of atherosclerosis: A perspective for the 1990s. *Nature* 362:801–809.

Sage H, Bornstein P (1979): Characterization of a novel collagen chain in human placenta and its relation to AB collagen. *Biochemistry* 18:3815–3822.

Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988): Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. *J Cell Biol* 107:743–751.

Sambrook J, Fritsch EF, Maniatis T (1989): “Molecular Cloning.” 2nd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Sarzani R, Brecher P, Chobanian AV (1989): Growth factor expression in aorta of normotensive and hypertensive rat. *J Clin Invest* 83:1404–1408.

Schwartz SM, Reidy M, Clowes A (1985): Kinetics of atherosclerosis: a stem cell model. *Ann NY Acad Sci* 454:292–304.

Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D (1987): Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. *Nature* 325:257–259.

Speir E, Sasse J, Shrivastav S, Casscells W (1991): Culture-induced increase in acidic and basic fibroblast growth factor activities and their association with the nuclei of vascular endothelial and smooth muscle cells. *J Cell Physiol* 147:362–373.

Stepp MA, Kindy M, Franzblau C, Sonenshein GE (1985): Cloning of type III collagen and expression in aortic smooth muscle cells. *Ann NY Acad Sci* 460:510–513.

Stepp MA, Kindy MS, Franzblau C, Sonenshein GE (1986): Complex regulation of collagen gene expression in cultured bovine aortic smooth muscle cells. *J Biol Chem* 261:6542–6547.

Strauss BH, Chisholm RJ, Keeley FW, Gottlieb AI, Logan RA, Armstrong PW (1994): Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. *Circ Res* 75:650–658.

Takahara K, Sato Y, Okazawa K, Okamoto N, Noda A, Yaoi Y, Kato I (1991): Complete primary structure of human collagen alpha 1 (V) chain. *J Biol Chem* 266:13124–13129.

Tan EML, Rouda S, Grennbaum SS, Moore JH, Fox JW, Sollberg S (1993): Acidic and basic fibroblast growth factors down-regulate collagen gene expression in keloid fibroblasts. *Am J Pathol* 142:463–470.

Thompson K, Rabinovitch M (1996): Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular-matrix bound basic fibroblast growth factor. *J Cell Physiol* 166:495–505.

Timpl R, Engel J (1987): Type VI collagen. In Mayne R, Burgesson RE (eds): "Structure and Function of Collagen Types." San Diego: Academic Press, pp 105–143.

Villaschi S, Nicosia RF (1993): Angiogenic role of endogenous basic fibroblast growth factor released by rat aorta after injury. *Am J Pathol* 143:181–190.

Vlodavsky I, Fridman R, Sullivan R, Sasse J, Klagsbrun M (1987a): Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. *J Cell Physiol* 131:402–408.

Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M (1987b): Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. *Proc Natl Acad Sci USA* 84:2292–2296.

Vuorio E, deCrombrugghe B (1990): The family of collagen genes. *Annu Rev Biochem* 59:837–872.

Weil D, Bernard M, Gargano S, Ramirez F (1987): The pro α 2(V) collagen gene is evolutionary related to the major fibrillar-forming collagens. *Nucleic Acids Res* 15: 181–198.

Winkles JA, Friesel R, Burgess WH, Howk R, Mehlman T, Weinstein R, Maciag T (1987): Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor). *Proc Natl Acad Sci USA* 84:7124–7128.