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Abstract Vascular smooth muscle cells (SMCs), the major cellular constituent of an artery, synthesize the bulk of
fibrillar collagens, including type V/XI, which regulates heterotypic collagen fibril assembly. Basic fibroblast growth
factor (bFGF) is a heparin-binding polypeptide growth factor that has been implicated in important events during the
development of atherosclerosis, such as early intimal SMC proliferation. Here we have investigated the effects of bFGF
on aortic SMC expression of type V/XI collagen. Treatment of exponentially growing or serum-deprived subconfluent
cultures of bovine aortic SMCs with bFGF decreased the steady-state levels of the mRNAs for collagen type V/XI,
including a1(V), a2(V), and a1(XI). The effect of bFGF was time dependent with a two- and a fourfold decrease in a2(V)
mRNA observed after treatment for 24 and 48 h, respectively. This decrease resulted from a drop in the rate of a2(V) gene
transcription; no change was observed in the stability of the a2(V) mRNA. Furthermore, accumulation of collagen
protein decreased upon bFGF treatment. As expected, treatment with bFGF increased the rate of proliferation of
serum-deprived SMCs, as judged by DNA content in the cultures, thymidine incorporation, and steady-state mRNA
levels of the S-phase-expressed histone H3.2. These results suggest that bFGF plays an important role in the regulation of
collagen fibril structure, with potential implications for the development and organization of an atherosclerotic lesion. J.
Cell. Biochem. 68:247–258, 1998. r 1998 Wiley-Liss, Inc.
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Smooth muscle cells (SMCs) are the major
constituents of the medial layer of an artery.
During the development of the artery, SMCs go
through an initial highly proliferative phase,
followed by the synthesis of extracellular ma-
trix components, including collagens, elastin,
and proteoglycans, as well as the enzymes in-
volved in matrix protein deposition [reviewed
in Ross, 1993]. Once the artery has been fully
formed, SMCs differentiate into a contractile
phenotype in which they normally remain
[Chamley-Campbell et al., 1979]. SMCs also
play a crucial role in the development of athero-

sclerosis. During lesion formation, SMCs mi-
grate from the medial layer into the intima, as
a normal response to injury [Ross, 1993]. In
this new environment, some initial rounds of
cell proliferation occur, which are followed by
the synthesis and deposition of the components
of the fibrotic plaque, including the major fibril-
lar collagen types I and III and the minor fibril-
lar collagen V/XI [Poole et al., 1971; Ross, 1993;
Schwartz et al., 1985; Vuorio and deCrombrug-
ghe, 1990; Gordon et al., 1990; Strauss et al.,
1994].

Type V collagen belongs to the group I fibril-
lar collagens and was originally discovered in
skin [Chung et al., 1976] and in human pla-
centa [Sage and Bornstein, 1979]. It is also
expressed in a variety of other tissues, includ-
ing smooth muscle tissue [Liau and Chan, 1989].
Type XI collagen, another group I fibrillar colla-
gen, was known to be closely related structur-
ally to type V collagen and share similar proper-
ties [Eyre and Wu, 1987; Morris et al., 1990];
however, these two species were originally de-
noted as different collagen types based on their
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apparent separate sites of synthesis. In particu-
lar, type XI collagen was thought to be ex-
pressed exclusively in cartilage; however, more
recently type XI chains were detected in bone in
trimeric structures with type V [Niyibizi and
Eyre, 1989]. In addition, mRNA for various
type XI chains were found in the placenta [Ber-
nard et al., 1988], and in rhabdomyosarcoma
cells [Kleman et al., 1992]. We demonstrated
that bovine vascular SMCs synthesize the a1
chain, but not the a2 or a3 chain of type XI
collagen [Brown et al., 1991]. As a result of
these findings, types V and XI are now consid-
ered a single family. Immunolocalization and
chemical cross-linking studies have shown that
type V/XI collagen can participate along with
other fibrillar collagens in heterotypic fibrils
[Fitch et al., 1984, 1988; Birk et al., 1988;
Mendler et al., 1989]. Evidence obtained origi-
nally in vitro [Birk et al., 1990] and more re-
cently in vivo [Andrikopoulos et al., 1995;
Marchant et al., 1997] indicates that type V
collagen plays a very important role in the
regulation of the diameter and architecture of
heterotypic fibrils. In atherosclerotic lesions in
humans and in animal models, the ratio of type
V collagen to types I and III collagen was found
to be increased [Ooshima, 1981; Morton and
Barnes, 1982; Murata et al., 1986] suggesting
that this collagen family may play a significant
role in the pathology of atherosclerosis.

The cytokine basic fibroblast growth factor
(bFGF) was originally identified as an activity
in pituitary extracts that stimulated growth of
Swiss hamster 3T3 fibroblasts [Gospodarowicz
et al., 1984]. bFGF is known for a multiplicity of
biological activities both in vivo and in vitro
[Klagsbrun and Edelman, 1989; Burgess and
Maciag, 1989; Rifkin and Moscatelli, 1989]. For
example, it has been shown to act as a potent
mitogen for a variety of cells in culture, includ-
ing SMCs [Winkles et al., 1987]. bFGF is a
single polypeptide with microheterogenity at
the N-terminal region that yields proteins of
molecular weights ranging from 16 to 24 kDa
[reviewed in Newby and George, 1993]. bFGF
lacks the classical signal peptide that targets
various proteins to the secretory pathway and
the mechanisms of its release remain obscure.
Previous studies have shown that viable cells
deposit bFGF into the extracellular matrix [Go-
spodarowicz et al., 1983; Vlodavsky et al.,
1987b], while more recent studies have shown
that bFGF is secreted upon cell injury or lysis

[Abraham et al., 1986; McNeil et al., 1989;
Brooks et al., 1991; Muthukrishnan et al., 1991;
Villaschi and Nicosia, 1993]. Following injury
to the intima, SMCs are exposed to a variety of
cytokines and factors, such as bFGF, secreted
by the endothelial cells, smooth muscle cells,
and macrophages [Baird et al., 1985; Vlodavsky
et al., 1987a,b; Schweigerer et al., 1987; Sar-
zani et al., 1989; Mansson et al., 1990; Speir et
al., 1991; Lindner et al., 1991]. Expression of
bFGF correlates with the migration and rapid
proliferation of vascular SMCs during the very
early stages of restenosis after balloon injury
[Lindner and Reidy, 1991]. In culture, treat-
ment of vascular SMCs with bFGF decreased
expression of collagen type I and type III [Ma-
jors and Ehrhart, 1993; Kennedy et al., 1995].
Here, we examined the effect of bFGF treat-
ment on the expression of type V/XI collagen.
Treatment of bovine aortic SMCs with bFGF
caused a significant drop in the levels of type
V/XI collagen mRNA and protein, due in part to
a decreased rate of gene transcription.

MATERIALS AND METHODS
Cell Culture and Treatment Conditions

Tissue culture reagents were purchased from
Life Technologies, Inc., except for Dulbecco’s
modified Eagle’s medium (DMEM), which was
purchased from JRH Biosciences. SMC ex-
plants were derived from the aortic arches of
female calves, as we have described previously
[Beldekas et al., 1982]. Cultures were fed every
2–3 days. Second and third passage cells were
used for experiments.

For treatment with bFGF (unless otherwise
indicated), cells were plated at an initial den-
sity of 5.0 3 105 cells/P150 dish (0.33 3 104

cells/cm2) and grown in medium supplemented
with 10% fetal bovine serum (FBS) (10% FBS-
DMEM). Subconfluent cultures were serum
starved for 1–3 days in medium containing
0.5% FBS (0.5% FBS–DMEM). Following addi-
tion of bFGF (0.5–5 ng/ml dissolved in carrier
solution: 50 mM Tris–HCl, pH 7.5, 0.3 M NaCl,
1 mM dithiothreitol, 0.05% gelatin), or the
equivalent volume of carrier solution, cultures
were incubated for the times indicated.

DNA Synthesis

SMCs were seeded at 60,000 cells/P35 tissue
culture dish in triplicate and grown for 1 day.
Cultures were then switched to 0.5% FBS–
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DMEM for 24 h, and treated with bFGF or
carrier solution for an additional 24 h. During
the final hour of treatment, the cells were pulsed
with 2 µCi/ml of [3H]thymidine (Dupont NEN;
80 Ci/mmol). Cells were washed twice in ice-
cold phosphate-buffered saline (PBS) and lysed
with addition of 1 ml of 10% trichloroacetic
acid. After 30 min, the resulting precipitate was
washed once with 10% trichloroacetic acid, solu-
bilized by incubation with 0.5 ml of 0.4 N NaOH
for 1 h, diluted to 5 ml with Formula-963 aque-
ous counting mixture (DuPont NEN) and quan-
titated in a LB 1217 Rack Beta liquid scintilla-
tion counter. The results are reported as the
mean 6SD.

RNA Isolation and Hybridization Analysis

Total cellular RNA was isolated by guanidin-
ium isothiocyanate extraction followed by puri-
fication on CsCl density gradients, as described
[Sambrook et al., 1989]. For Northern blot
analysis, RNA samples (10 or 15 µg) were dena-
tured and separated by electrophoresis on 1.0%
formaldehyde-agarose gels [Dean et al., 1983].
RNA was stained with ethidium bromide to
verify integrity and equal loading and then
transferred to GeneScreen Plus (DuPont NEN).
RNAwas cross-linked to the membrane by ultra-
violet (UV) irradiation (Stratalinker, Strata-
gene) at 0.12 joules/cm2 for 30 s. Probes, pre-
pared by random priming, were used as
described previously [Kindy and Sonenshein,
1986], except that 2.0 3 106 cpm/ml [32P]-
labeled DNA was employed. Quantitation by
scanning densitometry was performed using a
Molecular Dynamics 300Acomputing densitom-
eter.

Pepsin Digestion of Extracellular Matrix Proteins

Cultures, treated with bFGF or carrier solu-
tion alone for 24 h, were labeled with 25 µCi/ml
[3H]proline, as described previously [Lawrence
et al., 1994]. The medium was removed, and the
cell layers were washed three times in ice-cold
PBS. The cell layer was scraped in pepsin diges-
tion buffer, transferred to a 50-ml Falcon coni-
cal tube, and digested at 4°C for 16 h. The
pepsin-digested cell-layer-associated matrix was
dialyzed exhaustively against 0.5 M HAc, ly-
ophilized, and reconstituted to 1 ml distilled
H2O supplemented with protease inhibitors (2
mM phenylmethylsulfonyl fluoride and 2 mM
p-hydroxymercuribenzoate). Samples were nor-
malized for DNA content according to Burton

(1956) and resolved by electrophoresis in a 5–
15% polyacrylamide gradient sodium dodecyl
sulfate (SDS) gel. The radioactive signal was
enhanced using fluorography with 2,5-dipheny-
loxazole/dimethylsulfoxide (DMSO), as de-
scribed [Laskey and Mills, 1975]. Molecular
mass markers used included species at 200,
97.4, 69, 46, 30, 21.5, and 14.3 kDa (Rainbow
Molecular Mass Markers, Amersham, Arling-
ton Heights, IL). The molecular mass of the
species was estimated based on their migration
relative to the markers.

Cloned DNA Species

The cDNAs used included a1(III) collagen:
pCg6, 1.05-kb bovine cDNA [Stepp et al., 1985];
a1(V) collagen: pTV302, 3.2-kb human cDNA
[Takahara et al., 1991]; a2(V) collagen: Hf511,
2.5-kb human cDNA [Weil et al., 1987]; a1(XI)
collagen: pMU5G3, 2.7-kb bovine cDNA [Brown
et al., 1991]. The histone H3.2: pRAH3.2, a
genomic fragment encoding amino acids 57–
125 of histone H3.2 [Alterman et al., 1984] was
also employed.

Runoff Transcription Assays

Nuclear runoff analysis was performed by a
modification of the method of Greenberg and
Ziff (1984). Briefly, approximately 1 3 107 nu-
clei were incubated in the presence of 250 µCi of
[32P]-UTP (Dupont NEN; 3,200 Ci/mmole) for
30 min at 30°C. Labeled RNA was isolated, and
equal amounts of radiolabeled RNA (4.5 3 106

cpm/ml of hybridization buffer) were hybrid-
ized to plasmid DNA (10 µg/sample) immobi-
lized onto GeneScreen Plus by slot blotting
followed by UV irradiation; after hybridization
blots were washed as described previously
[Marhamati and Sonenshein, 1996].

RESULTS
Treatment With bFGF Decreases the Steady-State
Levels of Type V/XI Collagen mRNA in Cultures of

Aortic SMCs

We first addressed the question of whether
treatment of SMCs with bFGF affects type V/XI
collagen mRNA expression. Subconfluent cul-
tures of bovine aortic SMCs were incubated in
DMEM medium containing 10% FBS (10%
FBS–DMEM) or under serum deprivation con-
ditions (0.5% FBS–DMEM) for 24 h and then
treated with 2 ng/ml bFGF, or the equivalent
volume of carrier solution as control, for an
additional 24 h. Total RNA was extracted from
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the cultures and samples were subjected to
Northern blot analysis for collagen chain expres-
sion. Treatment with bFGF caused a decrease
in the steady-state mRNA levels of the a1(V),
a2(V), and a1(XI) collagen chains at either se-
rum concentration (Fig. 1A,1B). A drop was also
detected in the a1(III) mRNA levels (Fig. 1A),
consistent with previously published results
[Kennedy et al., 1995]. As expected, based on
previous work in our laboratory [Brown et al.,
1991], serum deprivation of subconfluent cul-
tures resulted in increased mRNA levels for all
fibrillar collagens. Collagen type VI is a nonfi-
brillar collagen, which is expressed in a variety
of cells [Timpl and Engel, 1987]. In contrast to
the effects of serum deprivation on the expres-
sion of fibrillar collagen mRNAs, the levels of
collagen a1(VI) mRNA were not affected (Fig.
1B and data not shown). Furthermore, treat-
ment with bFGF had no effect on the levels of
a1(VI) collagen mRNA. Thus, bFGF selectively
mediates a significant reduction in the steady-
state mRNA levels for the chains of type V/XI
collagen in vascular smooth muscle cells.

Dose- and Time-Dependent Effect of bFGF on the
Levels of a2(V) and a1(XI) Collagen mRNA

To test whether the effects of bFGF are dose
dependent, the levels of procollagen a2(V) and
a1(XI) mRNA were measured as a function of
bFGF concentration. Cultures of aortic SMCs
were seeded at 1 3 106 cells per P-150 tissue
culture plate in 10% FBS-DMEM and treated
with 0.5, 1, 2, and 5 ng/ml bFGF for 24 h and
RNA isolated and analyzed by Northern blot-
ting (Fig. 2). A detectable decrease in the levels
of a2(V) and a1(XI) mRNA was observed with a
concentration of bFGF as low as 0.5 ng/ml.
Treatment with increasing concentrations of
bFGF resulted in further decreases in the
mRNA levels of these chains, with the lowest
levels observed at 2–5 ng/ml bFGF. Higher con-
centrations of bFGF did not result in a further
decrease (data not shown). Thus, a concentra-
tion of 2 ng/ml bFGF was selected for the re-
maining studies.

To determine the kinetics of the response to
bFGF, subconfluent SMC cultures, rendered qui-
escent by serum deprivation for 72 h, were
treated with 2 ng/ml bFGF for 24 or 48 h, or
carrier solution for 48 h. RNA was extracted
from these cultures and analyzed by Northern
blotting for a2(V) collagen expression (Fig. 3).
High levels of a2(V) mRNA were detected in

quiescent cultures. Addition of bFGF for 24 or
48 h resulted in a two- and fourfold drop, respec-
tively in the levels of this message, in compari-
son to the levels detected in quiescent, or con-
trol cultures treated with carrier solution for 48
h. Thus, the reduction in the steady-state levels
of a2(V) mRNA caused by bFGF occurs in a
time-dependent fashion.

bFGF Decreases Collagen Protein Expression in
Aortic SMCs

To measure the effects of bFGF on collagen
protein expression, a radiolabeling experiment
was performed. Subconfluent cultures of aortic
SMCs, maintained in 10% FBS–DMEM or 0.5%
FBS–DMEM for 24 h, were treated with either
2 ng/ml bFGF or equivalent volume of carrier
solution. Cultures were then labeled with
[3H]proline for 8 h, washed, and the cell layers
digested with 0.1 mg/ml pepsin at 4°C for 24 h.
Samples were normalized for DNA content and
analyzed by electrophoresis in 5–15% SDS–
PAGE (Fig. 4). Cells treated with carrier solu-
tion exhibited major bands that correspond to
a1(V)/a1(XI), a2(V), a1(I)/a1(III), and a2(I), as
identified previously [Lawrence et al., 1994].
Treatment with bFGF, in either serum concen-
tration, resulted in a reduction in the levels of
type V/XI collagen proteins, as well as types I
and III. These findings are consistent with the
observed drop in mRNA levels of these fibrillar
collagens.

bFGF Does Not Decrease the Stability of
Procollagen mRNA

To investigate whether bFGF affects the sta-
bility of collagen mRNA, subconfluent cultures
of SMCs were treated with 2 ng/ml bFGF or
carrier solution for 24 h under serum depriva-
tion conditions. The selective inhibitor of RNA
polymerase II 5,6-dichlorobenzimidazole ribo-
side (DRB) was then added to each culture and
total RNA isolated at the indicated time points.
As shown in Figure 5, treatment with bFGF for
24 h (0 h DRB) led to the expected drop in the
a2(V), a1(XI), and a1(III) mRNA levels. No
significant change in the rate of collagen mRNA
decay was seen in bFGF treated versus control
cultures. DRB treatment had the expected ef-
fect on the mRNA levels of the labile c-jun
message in control and bFGF treated cultures,
verifying the efficacy of the inhibitor. Thus,
bFGF did not decrease the stability of the mRNA
species for these collagen chains, suggesting
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that other mechanisms are involved in the drop
in steady-state levels of these mRNAs.

Down-Regulation of Collagen Gene Transcription
by bFGF

To determine whether transcriptional control
mechanisms play a role in the decrease in the
steady-state collagen mRNAlevels, nuclear run-
off analysis was performed. Nuclei were iso-
lated from subconfluent cultures treated with 2
ng/ml bFGF or equivalent volume of carrier
solution for 24 h under serum deprivation con-
ditions. Hybridization of run-off transcripts to
a2(V), a1(XI), and a1(III) probes decreased sig-
nificantly upon bFGF treatment (Fig. 6). In
contrast, bFGF treatment slightly increased
the rate of transcription of the cell-cycle regu-
lated gene B-myb, whose steady-state mRNA
levels increased in the presence of bFGF (data
not shown). Thus, bFGF treatment results in a
drop in the rate of transcription of a2(V), a1(XI),
and a1(III) procollagen mRNA and this drop
accounts, at least in part, for the change in the
steady state mRNA levels of these collagens.

bFGF Increases the Rate of Bovine Aortic SMC
Proliferation

bFGF was found to stimulate growth in a
variety of cells, including SMCs [Winkles et al.,
1987; Goldring and Goldring, 1991; Newby and
George, 1993; Nugent et al., 1993]. To deter-
mine the extent of induction of cell growth upon
bFGF treatment with the bovine aortic SMCs,
the mRNA levels of the S-phase expressed gene
histone H3.2 were measured. The decrease in
the collagen mRNA levels was accompanied by
an increase in histone H3.2 mRNAlevels. Treat-
ment with bFGF caused a very dramatic in-
crease in H3.2 mRNA levels under serum depri-
vation conditions (0.5% FBS–DMEM) but had
only a minor effect in exponentially growing
cells, incubated in 10% FBS–DMEM (Fig. 1A).

Fig. 1. Treatment with bFGF decreases matrix gene and in-
creases growth-related mRNA expression in aortic SMCs. Sub-
confluent SMC cultures were incubated for 24 h in complete
medium (10% FBS–DMEM), or under serum deprivation condi-
tions (0.5% FBS–DMEM), and then treated either with 2 ng/ml
bFGF (in carrier solution) (1), or the equivalent volume of
carrier solution (2) for an additional 24 h. Total RNA was
isolated and samples (15 µg) subjected to Northern blot analysis
for the indicated genes analyzed in two separate gels (A,B).
Bottom panels, ethidium bromide-stained gel confirming RNA
quality and equal loading.
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To test directly for the mitogenic effect of bFGF
under serum deprivation conditions, SMCs were
plated at very low density and grown for 1 day
in 10% FBS–DMEM (subconfluence), switched
to 0.5% FBS–DMEM for 24 h, and treated with
increasing amounts of bFGF or carrier solution
as control, for an additional 24 h. Following
pulse labeling with 2 µCi/ml [3H]thymidine for
1 h, cells were harvested. A 3-fold increase in

thymidine incorporation was observed at every
concentration of bFGF used, in comparison to
the control serum deprived cultures (Fig. 7). A
distinct change in SMC morphology, was also
noted upon bFGF treatment. Control cultures
(treated with carrier solution) displayed a flat-
tened, spread phenotype, typical of quiescence.
In contrast, cells treated with bFGF were more
spindle shaped and thinner; furthermore cells
undergoing cytokinesis were plainly visible (Fig.
8). Thus, treatment of bovine aortic SMCs with
bFGF results in increased cell proliferation,
with a more pronounced effect under serum
deprivation conditions.

DISCUSSION

Treatment with bFGF decreased type V/XI
collagen expression by bovine aortic SMCs. A
drop in type V/XI collagen protein expression
was paralleled by a drop in the steady-state
levels of the collagen a1(V), a2(V), and a1(XI)
mRNAs. Consistent with the work of others
[Kennedy et al., 1995], we observed that bFGF
decreased the steady-state levels of a1(III)
mRNAs. The decrease in the collagen mRNAs
occurred in a dose- and time-dependent fash-
ion. Treatment with bFGF resulted in a de-
creased rate of transcription of genes for the
a2(V), a1(XI), and a1(III) collagen chains, but
did not apparently decrease the stability of
their mRNAs. In contrast to these effects on
fibrillar collagens, no change in the steady-
state level of a1(VI) mRNA was observed. Treat-

Fig. 2. Dose-dependent effects of bFGF on gene expression.
Subconfluent cultures of SMCs were maintained under serum
deprivation conditions for 24 h and then treated with carrier
solution (0 ng/ml) or the indicated concentration of bFGF for an
additional 24-h period. A: Total RNA was isolated and samples
(15 µg) subjected to Northern blot analysis for the indicated
genes. B: Ethidium bromide-stained gel, confirming RNA qual-
ity and equal loading, is shown.

Fig. 3. Time-dependent effects of bFGF on a2(V) collagen
mRNA expression. Subconfluent cultures of SMCs were main-
tained under serum deprivation conditions for 72 h, at which
time they were in quiescence (Q). The indicated cultures were
then treated either with 2 ng/ml bFGF for an additional 24 or 48
h or with carrier solution for 48 h. Total RNA was isolated and
samples (10 µg) subjected to Northern blot analysis for a2(V)
collagen gene expression.

Fig. 4. Treatment with bFGF decreases the levels of cell layer-
associated collagen protein. Subconfluent cultures were incu-
bated for 24 h in 10% FBS–DMEM or 0.5% FBS–DMEM, and
then treated with 2 ng/ml bFGF (1) or carrier solution (2) for an
additional 24 h period. Cultures were then incubated in the
presence of 25 µCi/ml [3H]proline for 8 h and the cell layer-
associated, pepsin-resistant material extracted. Samples, normal-
ized for DNA content, were subjected to 5–15% SDS–PAGE and
proteins visualized by autoradiography. Positions of the types I,
III, and V/XI collagen protein chains were made on the basis of
comparison to molecular weight and purified collagen protein
standards [Lawrence et al., 1994] (data not shown).
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ment with bFGF increased the rate of prolifera-
tion of SMCs when incubated under serum
deprivation conditions, while only a modest ef-
fect was seen in complete medium. Since the
decrease in type V/XI collagen expression was
seen in SMCs incubated with bFGF under ei-

ther growth conditions, its effects on this colla-
gen type appear to occur independent of the
growth state of the cells. Thus, our results
extend the findings of the effects of bFGF to
type V/XI collagen which regulate heterotypic
collagen fibril assembly, suggesting bFGF plays

Fig. 5. Treatment with bFGF does not decrease the half-life of
decay of collagen mRNAs. Subconfluent cultures were main-
tained under serum deprivation conditions for 24 h and then
treated with carrier solution or 2 ng/ml bFGF for an additional
24-h period. Following replacement with fresh 0.5% FBS-

DMEM containing bFGF or carrier solution, DRB was added to
30 µg/ml and total RNA isolated after 0, 6, 12, 20, or 24 h. A:
RNA samples (15 µg) were subjected to Northern blot analysis
for the indicated genes. B: Ethidium bromide-stained gel is
shown.
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an extremely important role in the regulation
of the architecture of the collagen fibrils.

Work from other groups has shown that type
V collagen plays a very important role in the
structural assembly of heterotypic collagen
fibrils in cornea where it assembles along with
type I collagen [Fitch et al., 1984, 1988; Birk et
al., 1988; Mendler et al., 1989]. Collagen type V
is assembled first inside these fibrils, and ap-
pears to regulate overall fibril diameter [Birk et
al., 1988]. Recently, data from our laboratory
indicate that type V/XI collagen plays a similar
role in the formation and regulation of fibril
architecture by vascular SMCs. In particular,
type V/XI collagen participated with type I in
heterotypic fibrils, and the ratio of type V/XI to
type I collagen correlated with fibril diameter

[K.E. Kypreos, D.E. Birk, V. Trinkaus-Randall,
and G.E. Sonenshein, manuscript in prepara-
tion].

Although the initiating events in the develop-
ment of the atherosclerotic plaque remain ob-
scure, the effect of bFGF in promoting prolifera-
tion of SMCs in the medial layer of the artery
appears to be a key element [Klagsbrun and
Edelman, 1989]. Expression of bFGF by endo-
thelial cells and SMCs has been observed in
human atherosclerotic lesions [Hughes et al.,
1993]. In animal models, antibody to bFGF
prevented restenosis after balloon injury [Lind-
ner and Reidy, 1991; Edelman et al., 1992]. In
the extracellular matrix, bFGF is associated
with heparan sulfate proteoglycans which
serves as a storage site for a more localized and
regulated response to injury. Heparin bound
bFGF appears to be biologically more active
and very stable against denaturation and pro-
teolytic degradation by proteinases such as plas-
min [Saksela et al., 1988]. Other studies, have
shown that elastase is able to release heparin
bound bFGF from the extracellular matrix, an
observation that may explain, at least partially,
the medial hypertrophy and neointimal prolif-
eration caused by ECM-degrading proteinases

Fig. 6. The rate of transcription of collagen genes is decreased
and B-myb increased by bFGF treatment. Subconfluent cultures
were maintained under serum deprivation conditions for 24 h
and then treated with carrier solution or 2 ng/ml bFGF for an
additional 24-h period. Nuclei from two independent experi-
ments (A,B) were isolated; the resulting radiolabeled RNAs
(runoff transcripts) were hybridized to the 10-µg/slot of the
indicated cDNA probe or pUC 19 vector DNA immobilized on
nylon membrane.

Fig. 7. Treatment with bFGF increases [3H]thymidine incorpo-
ration. Subconfluent cultures were maintained under serum
deprivation conditions for 24 h and then treated with carrier
solution (0 ng/ml) or the indicated concentration of bFGF for an
additional 24-h period. During the last 1 h, cultures were
incubated in the presence of 2 µCi/ml [3H]thymidine, and the
acid-insoluble radioactive material determined.
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in vascular disease [Thompson and Rabino-
vitch, 1996]. Nugent and Newman [1989] and
Koyama et al. [1996] have shown that poly-
meric type I collagen inhibits proliferation of
vascular SMCs in culture, suggesting that the
capacity of SMCs to respond to mitogenic stimuli
may be highly regulated by changes in the
extracellular matrix. Our results suggest that
bFGF may prevent collagen deposition early,
during the initial stages of plaque formation;
decreased collagen deposition may result in a
less dense extracellular matrix that allows
SMCs to migrate from the medial layer into the

intima where they are able to proliferate. How-
ever the effects of bFGF appear to attenuate
later, during the most advance stages of the
lesion, where collagen secretion and accumula-
tion become major events.
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Fig. 8. Treatment of serum-deprived SMCs with bFGF, displaying an altered morphology. Subconfluent cultures,
maintained under serum deprivation conditions for 24 h, were treated either with carrier solution (control) or with 2
ng/ml bFGF (bFGF) for an additional 24-h period. Cells undergoing cytokinesis were plainly visible (arrow).
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